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SPACE TRAJECTORIES AND ERRORS IN TIME,
FREQUENCY, AND TRACKING STATION LOCATION

By

F. O. Vonbun

ABSTRACT

The purpose of this paper is to show, in analytical fashion, how
the errors in tracking station time and frequency synchronization,
aswell as the errorsin station location influence accurate trajectory
determination.

Two systems, which data are presently used for most of the more
accurate orbit determination schemes, are described, namely, (a)
a range and range rate system and (b) a radar system. All other
systems are really a combination of these two basic systems and are
therefore not mentioned specifically in this report.

Rather simple analytical expressions are derived relating meas-
ing errors with those of time and frequency synchronization, as well
as ground tracking station location.

For the range and range rate system, the error in range rate
(8% =0.01 cm/s) is used as a '"yardstick and all other quantities
arederived fromit. For the radar system (not measuring range rate
directly), the total local position vector, as measured by such a
system,isused as the '"yardstick'" todetermine the necessary time
synchronization and station location accuracy.

Numerical examples are presented which hopefully will show
what accuracies of the mentioned quantities are needed for a good
ground tracking system tomakeits data most useful for the determi-
nation of accurate orbits and space trajectories.



SPACE TRAJECTORIES AND ERRORS IN TIME,
FREQUENCY, AND TRACKING STATION LOCATION

By

F. O. Vonbun

SUMMARY
A. General

Frequency (Doppler) or even more proper, a phase determination over a
certain time interval, is one of the few basic physical measurements which can
be performed with extreme accuracy. If this quantity can be used for the deter-
mination of orbits one would expect that these also will be very accurate. This
indeed can be done and is used on an almost daily basis, particularly for deep
space trajectory determination.

In brief, the Doppler frequency experienced by a station receiving an electro-
magnetic signal from a spacecraft is often used as a "measuring stick.!! One
could also use, even more appropriately, as a measure of a system, an error
quantity at a particular target. For instance, the closest approach to the moon
or a planet should be within 100m or 10,000 m, respectively. The problem with
this approach is that system requirements may result which could not be met
due to practical physical limitations such as systems noise, bias errors, tropo-
spheric and ionospheric propagation disturbing the transmitted and received
electromagnetic signals. This is the reason the range rate limited approach has
been chosen here. In any event, the final results should almost be the same.
Since, as mentioned, this ''yardstick" is an extremely accurate one (Av/v =
10-19 to0 10-12 per day), all other quantities involved have to have appropriate
accuracies. Thus, in order to really exploit the Doppler measurement to its
fullest as an example, the sender frequency has to be very accurate, the time
synchronization between tracking stations as well as their location on the surface
on the earth have to be determined to a "certain'' degree. How much and how all
these quantities and their errors are approximately related to each other isout-
lined in this paper. Coherent two or three way phase locked Doppler systems as
well as radar systems are discussed.

It should be pointed out here that a treatment of this nature, namely to es-
tablish '"reasonable' design limits, cannot be a mathematical rigorous one.



Experience and judgement have to enter into results of this nature. Neverthe-
less, it is felt that the values summarized will give the reader a good picture of
the problems and their solutions.

B. Relative Frequency Stability

As can be noted from equation (9) one needs a relative frequency stability of:
Svp 8 .
< ’) =<ﬁ) <8 . 3,10,
Yp v, t
2/ ¢m 27

where the first term refers to the measured Doppler shift during the measuring

time t , the second term refers to the relative stability of the local standard
oscillator over the time the signal travels from the station to the spacecraftand

back, s1 = 0.01 cm/s, the assumed "yardstick," and = 50 km/s is assumed for
an average maximum interplanetary range rate.

In addition, it should be noted that the value ( 5c/c) has to be considered as
an unknown in the orbit determination process in order to be able to "use'' the
above value.

C. Station Time Synchronization

As can be seen from equations (12) and (13), one obtains for 3t = 0.1 to 0.2
msec for the earth moon space using 8r= 0.1 cm/s and the full earth accelera-
tion = 1000 cm/s? (a pessimistic value proper for near earth space).

Similar 3t = 0.2 msec as the needed time synchronization error for a radar
depending on the assumed angular bias error of the radar considered. Equations
(16) and (17) and (17a) are applicable for this case.

For interplanetary missions, where ; is small (in this case 2" = 0.6 cm/s?
is the acceleration due to the sun for 1 AU) even with §r= 0.01 cm/s (compared
to 0.1 cm/s for near earth and lunar space) a value of 5t = 2 msec is adequate as
given by equation (13). Only in the special case of a planetary approach or a
planetary fly by, timing errors of 8t = 10 to 20 u sec seems to be needed. For
this case however the method suggested by JPL, namely, using the orbit for time
synchronization, can fulfill this requirement without the use of additional equip-
ment or methods.



D. Station Location Errors

To fully utilize the Doppler error of only 0.01 cm/s a station location
accuracy of:

|8§| 21.5 to 5.5 meters

will be needed depending on the use of equation (25) or (25b). These numbers give
a range to work toward in the future.

In case of a radar system, a station error range of
|8§| = 3.5 to 11.0 meters

will be necessary for future systems according to equation (28) and itsassociated
assumptions.

E. Frequency Synchronization

For a two-way Doppler system, similar values hold as stated under B above.
In this case one cannot speak of frequency synchronization as such but more of
frequency stability during the travel time of the electromagnetic signal.

This is of course different for the three-way Doppler system as applied for
lunar and planetary missions.

As can be seen from equation (18), in order to make full use of the Doppler
(81 = 0.01 cm/s) a, frequency synchronization between station 1 and 2 of

8v12
Sv

[+]

2
§ < 10-11
3

is needed. Or in brief, field worthy hydrogen masers will have to be developed
and used.

It should be pointed out that the errors considered, namely, the errors in
frequency synchronization, tracking station time synchronization, and the errors
in location of the tracking stations on earth are to be considered as bias errors.
Obviously so, since all these quantities stay approximately constant during the
time when tracking measurements are taken and the orbits determined.






I. FREQUENCY STABILITY

One of the first questions to be answered, when a coherent Doppler tracking

system is to be designed, is: What frequency stability of the transmitter is
required ?

As can be seen by the schematic of Figure 1, the following principle !:2.3.4.5
is used to "detect' the Doppler frequency shift ”n, for a two-way Doppler system.

The multiplied frequency of a stable source v, is transmitted to the space-
craft, received there, transplanted to insure no interference, reiransmitted to
the same ground receiving system together with the translation factor k, and
finally fed into a mixer5. Here, the difference frequency (Doppler) between the
signal sent to the spacecraft and received back on the ground is extracted as the
Doppler v, . This Doppler is of course only as good as the oscillator is during
the time the’ signal takes to transverse twice (up and down) the spacecraft dis-
tance r from the transmitting ground station.

Thus, the frequency of the source has to be "constant" during this travel time
27, What "constant'' means here will be shown in the following.

A. The Doppler Shift

The special relativistic equation for the Doppler shift reads:1.2.3.4

1@ .7
vV = Vo—_c_— (1)
2
1- l)
(e
where: ¥ is the relative velocity between spacecraft and receiving station v =
|¥| ; c is the speed (scalar) of light; r the frequency at the spacecraft; v, the

transmitted frequency, r° the unit position vector from the station to the space-
craft in the moving frame of reference.

Further

B2 - ) (2)
is the range rate of the spacecraft with respect to the tracking station. A similar
equation holds for the return path as shown in references 1, 2, 3, and 4. After
some manipulation, one obtains for the ratio of the received frequency ! and

the transmitted frequency v, the following:
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GODDARD SPACE FLIGHT CENTER

MISSION ANALYSIS OFFICE
Vp2 APRIL 1967 715.02.03

Figure 1-Two Way Doppler System
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The Doppler frequency for the so-called two-way mode ", is known simply as:
Vnz = (vl-vo) “4)

The factor k can be assumed as 1 since this value is compensated for on the
ground, as shown in reference 5, and therefore is of no interest for the principle
involved. As mentioned, the frequency translation (k) was performed only to rid
interference at the spacecraft.

From equations (3) and (4) one obtains for the range rate:

()

Equation (5) relates Doppler frequency i, transmitter frequency v_, speed of
light c and the range rate r between spacecraft and transmitting stations in exact
form as stated by the special theory of relativity. (No gravitational terms are
considered since these are small effects compared to these used here.)

B. The Relative Errors

Equation (5) will now be used to answer the question of frequency stability
using (d¥/r)* as a "'yardstick." Since only small variations are to be considered
and v,/ v <<<1equation (5) can be simplified for the following variational analy-
sis that is:

* %k
Yp

faze i
"2 7. (6)

Varying equation (6) and adding the results in the Gaussian sense leads to

*During the course of this paper normalized errors such as & _/e, 8;/;, ... etc., are often used
for simplicity of the mathematical expressions.
**Sign of Dopple frequency ¥, is neglected from now on since if has no real meaning in the
sense of a “negative” frequency.



*\2 2 Sv.\2 Sv, \2
() - () - (_> . (_) . (7)
r C VD Vo
This equation shows that the relative error 5#/r one is making in the
determination of r is dependent on the relative error in the speed of light §c/c,
the relative error in the Doppler frequency 8§y, /v, and the transmitter frequency

Svo/vo . Decreasing St or §f/r means one has to reduce also all three other
quantities accordingly.

First, one has to improve the relative error (5c/c) of the speed of light (at
present (5c /c) = 3.10-7)6:7:8.9 then one has to be able to measure the relative
Doppler frequency ( 8y / p) to at least the same accuracy. This means that: a
certain measuring t1me t. and measuring time error 8t  have to be secured
to accomplish a frequency measurement to a given accuracy !°, that is:

Sy, v, 5t 2r 8t
D m m
= 2 ., 2 0 8
” (8)

Y,

D 0 m 'm

assuming that the quantities contributing to noise (noise modulation index, signal
to noise ratio) are small enough compared to (8t /t_ ) which is the case for the
systems and methods considered here.

Assuming as an example a carrier frequency v, = 2000 Mc a measuring time
t, = 1 sec and an error in the measuring time 8t = 10~ -6 gec results in a value of

5
. % 10°4 - 1076 - = % 10710 (for £ = 10 km/s).
V.

D

In addition, of course, the transmitter standard oscillator has to be "constant"
during the travel time 2 7 of the electromagnetic wave from the transmitter to the
spacecraft. Any shift during this time cannot be detected by the mixing process
as shown in Figure 1 and described in reference 5 for instance.

sc <5Vn m) Sv,
= s F (72)
€ D t Yo 2r

Assume, as an example, all three quantities are equal and are 10”8 (a conser-
vative value) than §¢ = v3.10-6 r. For flights between the earth and the moon
£ =3km/s=3,10° cm/s and thus &f = 1.0 cm/s which is at present ade-
quate for purposes of trajectory determination for the Apollo project for
instance 7+8:11 throush 16 (geg glgo Figures 2a, 2b).

In brief, one needs:

8
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Figure 2a depicts the instantaneous and propagated (to the moon) position error
of a lunar transfer using a bias range rate error of 1 cm/s plus a 1 cm/sec noise
component superimposed. Station errors as given in references 7 and 8 are also
included to show realistic values as used for these Apollo Navigation studies.
Figure 2b shows the same for the spacecraft velocity.

For interplanetary flights one has to decrease the errors in range rate in
order to get a more reasonable trajectory. Figures 3a and 3b show the position
and velocity errors of a Jupiter probe as an example when tracked by a two-way
Doppler system using three ground stations approximately 120° separated in
longitude. The errors of twenty days of tracking are shown, then these errors
are propagated to 260, 458, and 500 days respectively (planets intercept) along
the trajectory. This error propagation is done in order to be able to determine
if it is reasonable to make a midcourse maneuver say after 20 days of tracking
based upon our range rate accuracy requirements discussed here.

Since at present both quantities namely (8v,/v,) and (3v,/v,) can be deter-
mined far better than ( c/c) one has to improve on the latter to improve (81/1)
as shown by equations (7) and (7a). This should possibly be done by an orbit in-
dependent method in a laboratory since the value of ¢ and thus (&c/c) can be
"calculated" (considered as an additional unknown in the orbit computation) to-
gether with the orbit parameters station locations, etc. The problem involved
here is that all our constants are based upon the velocity of light within 3.10-7 as
quoted before!?’. It should be noted that the velocity of light is one of the primary
physical constants and really occupies a '"key position' in astronomy'’''® . The
velocity of light is involved via the 'light time" (time the light needstotransverse
1 AU, the heliocentric distance of the center of mass of the earth + moon system)
with the solar parallax, the mean earth radius, the eccentricity of the earth orbit,
the Gaussian gravitational constant, etc. This means in essence all these quanti-
ties have to be changed accordingly to proper adjust our physical constants in
the Universe in terms of distance, distance variation, time, etcl’,

For interplanetary flights 19+ 20.21 values of §r = 0,02 cm/s have been ob-
tained over a 1 minute measuring time. Thus, using 0.01 cm/s as a "standard"
one would need for r = 5.10¢ cm/s the following accuracies:

. Sv. 3v
) (3), @)
D tm o 2r

Assuming a good S/N ratio of say 10db or more and Doppler measuring times in
the order of mimtes 19, atmospheric disturbances seem to be the only limiting
factors 19-20.21.22

As shown in reference 22, this limit is in the order to 0.01 cm/s rms when
elevation angles ¢ 2 10° are used and daily tropospheric connection terms are

11
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applied in the order of § N = 5 where N = (n-1) :10-%, and n is the index of re-
fraction. The only unknown guantity is ($c/c) to the accuracy stated, thus abetter
determination of §c/c = 3.10~7 as shown in reference 6 is needed. Laboratory
measurements of the velocity of light will probably not reach an accuracy of 1p
101° or better in the near future. One way to circumvent the errors ofthe "known"
value of ¢ is to introduce this quantity as an unknown into the orbit determination

process.

II. STATION TIME SYNCHRONIZATION

One of the next logical questions to answer is: To what accuracy should the
time be synchronized between tracking station used for orbit determination?

A relationship between the time error 5t and the tracking quantities to be
measured will be derived in the following. A CW range rate system and a radar
system is considered since their time synchronization requirements are different
since different "yardsticks" have to be used. (A radar does not '""measure' r
as such for instance.)

A. Synchronization Between Station Time and Orbit Time

For orbit determination, the local or station measurements r, r, etc. (or any
other measurement) are taken at a certain time t. These values are then trans-
mitted from the station to the computing center and there used for orbit determi-~
nation. Thus, the station ""clock' has to be synchronized to the computing center
"clock' to within a certain limit, say §t. What this value should be in order to
make full use of our "standard' $r is shown in the following.

1. TFor a CW Range Rate System

Considering small deviatidns only one can write to a first order accuracy for
the variation r the following:

5P 2T 5t (10)

since
Pl i
st

where T is the magnitude of the time derivative of the range rate r and &t is the
time error to be determined here.



The spacecraft inertial position vector (see

-
+T

w1

—
p =
<

and there accelerations are:

—p

—
-

-y
+r .

ol

Figure 4) 7 is:

(11)

12)

Borrowing terms from vector analysis, that is, R = (@ x R ) and further R=

(& x (@ x R)) one obtains:
P = (& x (@ x ﬁ)) +

Using (12a) and (10) one obtains approximately:

5
St = !

|7 - R

Here one has to remember two points, namely:

7 (12a)

(13)

(a) the range rate error 5r was previously assumed to be 0.01 em/s based

upon deep space mission results and

(b) range rate is NOT the only measurable used for orbit determination for
near earth satellites except for the TRANET spacecraft. From experi-
mental data such as our Goddard spacecraft as well as lunar orbiter
evaluation a value of 57 = 1 cm/s seems to emerge. Improvements are
on the other hand under way so that an assumption of dr = 0.1 ecm/s for
earth and lunar space satellites seems reasonable for the near future.
Using this value namely df = 0.1 cm/s and g = 10® cm/s? as the near
earth and lunar space ''yardstick'' one obtains using (13) for

0.1

8t =—— =10"* sec =100 u sec (13a)

108

The value |R| = 3 cm/s? has been neglected as comparedto 5 = 1¢g =

1000 cm/s2.

For interplanetary travel, where the acceleration terms are small (in the
order of a few cm/s?), timing errors can be appropriately large as dictated by

equation (13).

15
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The value given in (13a) should then really suffice for most of our space
tracking problems.

The only time where more stringent requirements are to be considered is
during a planetary approach as well as flyby missions. For such cases, the value
given in (13a) may have to be eventually reduced to say 10 to 20 usec. (5 2
1000 cm/s?, 8¢ = 0.01 cm/s). Here, on the other hand, single tracking stations
are mostly involved for approximately 8 hours each day if necessary. The station
time synchronization method as suggested by JPL (reference 27) can be applied
for this case reducing the timing errors to the above mentioned values without
elaborate additional station equipment and or other (VLF etc.) methods.

2. For a Radar System

For near earth orbit calculations more than just rf information (or not at all)
is used in many cases. Angular data (azimuth, elevation, or equivalent) and range
data (radar) together are utilized to determine orbits for manned flight programs
for instance’'8:11.12  In this case one can obviously not use r or 5r as a yard-
stick, yet time errors do enter into the orbit analysis. They are but here some-
what more relaxed as shall be shown.

Assume a near earth spacecraft moves with say 10 km/s (during a lunar
transfer orbit for instance) and the radar system would '"look" in such a fashion
that it would experience almost the full 10 km/s (pessimistic case). What would
the time accuracy have to be to make the position measurement (r~ a vector
quantity) accurate to a certain predescribed number of meters (say 5 to 10m)?

In this case one can write (see Figure 4)

?:?o +Vt (14)

Where T is the measured slant range vector r att = t (range r, azimuth a, eleva-
tion €) ?o is the initial position vector at t = 0 and V is the velocity of the space-
craft relative to the radar system. If the stations would be synchronized com-
pletely, the value T =T at t = 0. This of course, 'cannever be achieved. Therefore,
varying equation (14) yields

BT =8T +8Vt+V st (15)

Considering all these errors one obtains in the Gaussian sense rearranging the
terms and introducing r, a, and €

17



v28t2 = 5r2 4+ r2 (52 + 8a?) + 81 + 12 (5€2 + 8a2) + Sv2t?

or

5t =%. V25812 + 212 (8€2 + 8a?) + dv2t2 (16)

since 5r2 and 522 t2(t is to be expected in the order of say msec or less) are
always relatively small as experience has shown as compared to the middle term,
one can write simply for

st 222 84, (17)
v

where 8% _ is the bias error in elevation and azimuth assumed to be equal for
reasons oP simplicity. Equation (17) thus gives an estimate of the time synchro-
nization needed for a good radar system,

To quote an example, assume a near earth orbit with v = 8000 m/ s, a radar
slant range r = 200 km, and a elevation and azimuth bias 5x B= 0.02 mrad, than
5t = 0.5 msec.

For near earth orbit determination, the angular measurements of a radar
system play a major role particularly when only short measuring (tracking) times
say in the order of 60 to 100 sec are available. In this case, one obtains

st 2 2% . Sesh (17a)

é v
max

where S¢; is the bias error in the random elevation angle, v is the orbital speed
of the spacecraft, h is its height, and ¢_,, is the maximum angular acceleration.
Equation (17a) represents a worst case overhead pass. Using again as anexample
v= 8000 ms, h =200 km, 3¢, =0.02 mrad, one obtains for §t = 0.25 msec.

Thus even for sophisticated, and properly calibrated radars, a true synchro-
nization of 0.2 msec occurs to be adequate since range, azimuth and elevation
measurements play a role in the needed time synchronization as equation (17)
indicates. The matter of fact we can see, as mentioned, from (17) that the angular
errors push the needed time synchronization to a larger value,

In reference 26 it is shown how an error in station time synchronization in-
fluences the errors in the final Apollo orbits obtained. In general, under the
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present assumed Apollo systems errors 7+-8 timing errors of approximately

10 msec do not appreciably influence the Apollo earth parking and lunar transfer
orbits. This is different for lunar orbits where 10 msec do make a difference by
a factor of 10 as compared to 1 msec. See Figure 5 (taken from reference 26).

It should be mentioned here that a rather simple and therefore elegant
method for time synchronization was suggested by JPL, reference 27. In this
method, the range is measured from 2 stations using say a CW ranging system.
From one of the ranges the ""time' of one of the stations can be determined with
respect to the other. The error in time synchronization 5t = 1/c § pos. where
3 pos is the position error of the spacecraft and c is the speed of light. One can
see that even a relative large position error, say 3 km (see Figure 3), resultsin
§t=1/3.105-3 3 = 105 = 10usec, a rather small time synchronization error.

III. FREQUENCY SYNCHRONIZATION

As outlined under I. the frequency of a transmitting system has to be "con-
stant" only to a specified value during the travel time of the signal.

This is, of course, not the case when the transmitted signal is not only re-
ceived at the transmitting site but also by a so-called ""secondary" station. This
technique, the 3-way Doppler, a "'pseudo Doppler" is applied for orbit determina-
tion of the lunar orbiter and will be used for the lunar orbit determination during
the Apollo mission7:8.11 (See also Figure 6).

Using exactly the same approach as outlined under chapter 1. one canwrite
a similar equation as (9) but

8vp, < 8vy, . dv,, < ér, 2 2.10-° (18)

Vb3 Vo1 Yo2 r

ps

where the pseudo Doppler frequency 7+8 at the second station is Y3 (3-way
Doppler) and 8v,, = (v,, - ¥,,) is the difference frequency (error in frequency
synchronization) between station 1 and 2 (see Figure 5) and i-p, is the pseudo
range rate between the two stations. One has to modify (9) since the value sv,,,
which is not known, will be included in the 3-way Doppler (pseudo Doppler) as can
be seen by inspecting Figure 5. From equation (18) one obtains than for 8v ,

a similar value than 38y, ,. Obviously when v, is measured, the error dv,,

D3
is contained in the error of vy, , namely 8y,,. Equation (18) can be written as

. Sx"p'
8v,, = 2v, = (19)
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where r'ps represent the 3-way (pseudo) Doppler.

Example:
Sx"p' = 0.1 cny/s
v, = 2.10° cps.
than
S:i =%_ . 10-11

is an extreme small value.

This number however is obtainable with hydrogen masers?3:24:25, Thus a
3-way Doppler system’+® seems to be one of the first practical systems in the
field requiring a frequency standard of the quality of a hydrogen maser. It
should be noted that a frequency difference Sv,, between these two standards
still result in bias error in r,, which is more damaging for the orbit analysis
(becomes less accurate) than a random error. A bias error is the same no
matter how many measurements are made, a random error decreases with N~1/2,
the number of measurements !3:14.15 |

IV. STATION LOCATION ERRORS

Possible location errors, compatible with a range rate system and the
"yardstick §r'', as well as for a radar system, will be discussed in the follow-
ing. These errors are considered as a limit for these systems based upon their
accuracy assumptions.

A. For a CW Range Rate System

The aim here is to relate a station deviation SR (the variation of the station
position vector R) to the range rate deviation 8r.

From Figure 7 one can see that the range rate error to an error in station
location can be expressed as:

° - 5R) (20)
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Where r° is the unit position vector from_..the station to the spacecraft SR
is the variation of the station velocity vector R (caused by a station error). -
Equation (20) is simply the projection of the ground station velocity error $R,
caused by its location error, onto the position vector r as shown in Figure 7.

On the other hand, from basic vector analysis, the following holds:
R=R=@xR) (21)

Where o is the rotation vector of the earth and R is the station position vector
as before (vector from center of earth to station).

Varying (11) yields
5R = (@ x 5R) (22)
assuming 8z = 0, or a constant rotation of the earth during the time interval
considered.

Introducing (22) into (20) finally results to a first order approximation in:

8t = (T2 + (@ x SR)) (23)

Equation (23) can also be written as

8r =w SR sin y cos ¢ (24)

Where v is the angle between = and $R and ¢ is the angle between (& X Sﬁ)
and T°, Since these two quantities are not known, it could be assumed that their
product be equal to one, thus making the value of SR somewhat small, The mini-
mum variation, or error in location of a tracking station SR is then from (24)

. 8r
SR = - (25)
in terms of the "yardstick" 5r and the known quantity of the earth's rotation W.
Since the product siny cos ¢ will never be equal to unity in practice, as

assumed in equation (25), a quadratic (energy equivalent) average will give a
more realistic value. That is

1 f J. sin? y cos? ¢ 8y 8o =
472 ar Janm
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than (25) reads

o
|
e
-
o
e

(25a)

e

Example: Assume again
8r = 0.01 cm/s (deep space mission)

w=7.3°10"5 sec~!

In brief,

SR =5 1/2 meters

If this can be done, then one can make full use of the r measurement up to
an accuracy of 8r = 0.01 cm/s providing the requirements discussed in Chapters
I. and [I. can be met.

B. For a Radar System

Again for a radar system, not measuring r as such, an other criterion, say
the position error has to be introduced. In general, if the station position error
$R is smaller than the radar error 5T, no improvements can be obtained anymore
by the radar system. That is

SR = 5T (26)

or

SR=v8r2 4 r2 (5€? + 8a?) 27

Using the same reason (neglecting 5r?) as for equation (17) one obtains for
the station error (square root of the number of the components):

SRZVZ r (-%+ s;,) (28)
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Where §% =8 a = § ¢, N the number of measurements used to ""construct’ one
radar point (a vector, r (r, a,€)) and 8% ; is the angular bias error.

Example

Assume as before, N = 10, r = 300 km, &% = 0.02 mrad, 843 = 0 and 0.02
mrad than we obtain:’

SR = 11 meters
and

SR =31/2 meters

depending on the bias error 5“3‘ A reasonable range of station accuracies is
believed to be given by these figures.
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